Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals.

نویسندگان

  • Ilias Kazanis
  • Justin D Lathia
  • Tegy J Vadakkan
  • Eric Raborn
  • Ruiqian Wan
  • Mohamed R Mughal
  • D Mark Eckley
  • Takako Sasaki
  • Bruce Patton
  • Mark P Mattson
  • Karen K Hirschi
  • Mary E Dickinson
  • Charles ffrench-Constant
چکیده

The subependymal zone (SEZ) of the lateral ventricles is one of the areas of the adult brain where new neurons are continuously generated from neural stem cells (NSCs), via rapidly dividing precursors. This neurogenic niche is a complex cellular and extracellular microenvironment, highly vascularized compared to non-neurogenic periventricular areas, within which NSCs and precursors exhibit distinct behavior. Here, we investigate the possible mechanisms by which extracellular matrix molecules and their receptors might regulate this differential behavior. We show that NSCs and precursors proceed through mitosis in the same domains within the SEZ of adult male mice--albeit with NSCs nearer ependymal cells--and that distance from the ventricle is a stronger limiting factor for neurogenic activity than distance from blood vessels. Furthermore, we show that NSCs and precursors are embedded in a laminin-rich extracellular matrix, to which they can both contribute. Importantly, they express differential levels of extracellular matrix receptors, with NSCs expressing low levels of alpha6beta1 integrin, syndecan-1, and lutheran, and in vivo blocking of beta1 integrin selectively induced the proliferation and ectopic migration of precursors. Finally, when NSCs are activated to reconstitute the niche after depletion of precursors, expression of laminin receptors is upregulated. These results indicate that the distinct behavior of adult NSCs and precursors is not necessarily regulated via exposure to differential extracellular signals, but rather via intrinsic regulation of their interaction with their microenvironment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development/Plasticity/Repair Quiescence and Activation of Stem and Precursor Cell Populations in the Subependymal Zone of the Mammalian Brain Are Associated with Distinct Cellular and Extracellular Matrix Signals

Ilias Kazanis,1* Justin D. Lathia,1,2* Tegy J. Vadakkan,3 Eric Raborn,4,5,6 Ruiqian Wan,2 Mohamed R. Mughal,2 D. Mark Eckley,7 Takako Sasaki,8 Bruce Patton,9 Mark P. Mattson,2 Karen K. Hirschi,4,5,6 Mary E. Dickinson,3 and Charles ffrench-Constant1,10 1Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom, 2Laboratory of Neurosciences, National Institute on Aging I...

متن کامل

Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages

The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...

متن کامل

Protective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury

Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain.  Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

Combination of Stem Cell Mobilized by Granulocyte-Colony Stimulating Factor and Human Umbilical Cord Matrix Stem Cell: Therapy of Traumatic Brain Injury in Rats

Objective(s) Clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to examine the impression of a combination therapy. This was performed by intravenous injection of human umbilical cord matrix stem cell (hUCMSC-Wharton,s jelly stem cell) with bone marrow cell mobilized by granulocytecolony stimulating factor (G-CSF) in rats injured with cortical com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 29  شماره 

صفحات  -

تاریخ انتشار 2010